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1. Use of ultrasonic vibration can reduce insertion force and 

tissue dimpling during electrode array insertion.

2. Reducing insertion force and dimpling of brain/neural 

tissue during ultrasonic vibration-aided insertion will lead 

to improved recording performance and reduced acute 

inflammatory response.

Neural Implants

+ In addition to the brain, future applications of the 

technology yet to be explored include both spinal 

cord and peripheral nerve targets.
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+ In-vivo animal testing to evaluate whether ultrasonic 

vibration-aided insertion of electrodes into brain tissue 

may reduce the inflammatory response and improve 

neural interface performance:
• Electrode impedance

• Neural recording quality over time

• Immunohistochemistry 

+ Thermal imaging data suggests enhanced insertion can be 

achieved with no risk of tissue over-heating 
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Example of thermal data obtained from 60 seconds of

0.5 W actuation in an agar model. Custom micro-

wire, Tucker-Davis, and NeuroNexus arrays were

tested and all resulted in a less than 0.9C

temperature increase at agar surface after 60

seconds of continuous actuation.

Comparison of actuated and non-actuated insertion force (Left) and surface dimpling (Right) of a 4x4 micro-wire array (40 µm, 500

µm spacing) inserted into 0.5% agar model with varying thicknesses of top 0.85% agar layer (to simulate pia). Insertion velocity:

200 µm/s. Actuation significantly reduces insertion force/dimpling below non-actuated force/dimpling for all 0.85% agar layer

thicknesses studied. ∆ indicates percentage reduction. Error bars indicate standard error.
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Stereotaxis+ Neural implants have improved our 

understanding of brain function, and hold great 

potential to treat many neurological disorders.

+ Penetrating electrode arrays 

provide a direct interface for 

communication with neural 

systems including brain, spinal 

cord, and nerves:

• Basic science experiments: brain function, neural 

mechanisms

• Future clinical applications: brain-machine 

interfacing, sensory prostheses, restore/modulate 

organ function 

+ Establishing stable, chronic multi-channel neural 

interfaces with penetrating electrode technologies 

remains a significant challenge limiting clinical 

translation. 

+ Densely spaced penetrating electrodes commonly 

cause significant brain compression (dimpling) in the 

local region of the implant site.  
• The dimpling of the brain increases risk of implantation 

trauma and inflammation, and makes it difficult to 

accurately target specific cortical layers and nerve fibers.
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To develop an implant insertion system that utilizes ultrasonic

vibration to enable smoother insertion of penetrating electrode

arrays into neural tissue with significantly less tissue dimpling.

+ 70-90% reduction of max insertion force and surface dimple 

with ultrasonic vibration 
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Rat in-vivo electrode insertion and recording study [1]:

+ Thinning out meninges with collagenase enabled less 

forceful electrode insertion.
• Reduced force and less tissue dimpling.

+ Collagenase-aided implanted electrodes yielded better 

recording performance (e.g., larger mean spikes).

Preliminary Work

Left: Insertion profiles for bi-lateral micro-wire electrode array insertions into rat cortex with and without

collagenase. Center: Means of max insertion force showing effect of insertion site location and

collagenase treatment. Error bars represent standard deviation; p-values from Student t-test. Right: Mean

spike amplitudes trended larger in arrays inserted with collagenase.

Coupler

Implant

U
lt

ra
s

o
n

ic
 A

c
tu

a
to

r

Micro-positioning 

stage

System comprises a stereotaxis mountable micro-positioner stage which advances an ultrasonic

actuator. The neural implant receives ultrasonic vibration via a detachable coupler. A LabVIEW-

based GUI controls the micro-positioner and actuator, while recording force and position data.

An ultra-low capacity (10g, 2µN resolution)

force sensor measures insertion force on the

opposite side of agar brain model.

Agar Brain Model

Force Sensor

Electrode 

Array

Over-exposed digital microscope images are

analyzed using ImageJ to quantify displacement.

Distances between initial contact with agar surface

and the estimated position of the surface at max

dimple along a subset of shanks is measured and

averaged.

A FLIR 450sc infrared thermal camera is used

to measure potential heat generation at the

agar surface and to identify coupling

inefficiencies.
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) Insertion velocity: 

100 µm/second

0.85% agar 

thickness: ~600 µm

Power:  1.5 W for 

BlackRock, 0.5 W for 

all others

+ Applicable to a range of neural implant types

Oscillatory Displacement 

vs. Power
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+Out-of-plane vibration 

diminishes upon contact

Measured 

Non-Actuated

Width: 18.1 µm
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Demonstration of digital optical microscopy method for measuring oscillatory

displacement of an actuated NeuroNexus probe. Left: Displacement vs. actuator power

for probe in air, measured from still image series using ImageJ. Right: Analysis of out-

of-plane vibration of shanks near agar surface: out-of-plane motion diminishes quickly

after initial contact.

Motivation

Study Hypotheses

+ Actuated vs. non-actuated insertion comparison video:  


