

Innovative motion + Positive outcomes



- next generation of neuroprosthetics.
- Points of failure for chronically implanted microelectrode arrays:
- cell loss near electrode sites.

- - derived neurotrophic factor and other neurotrophic factors.
- tissue at the neural interface can promote:
  - to-noise ratios, electrode single-unit yields, and histological evaluation of glial scarring.

- (PVA) acoustic horn. PVA can be acoustic impedancematched to skull to minimize acoustic energy loss.



between the piezo ultrasound source and skull surface for acoustic coupling.

# **Delivery of Low-Intensity Pulsed Ultrasound in the Cortex to Improve** Longevity and Performance of Neural Interfaces

R.B. Bagwell,<sup>1</sup> N.N. Tirko,<sup>1,2</sup> A.S. Alsubhi,<sup>1</sup> J.K. Greaser,<sup>1</sup> R.S. Clement,<sup>1</sup> K. Snook,<sup>1</sup> and M.L. Mulvihill<sup>1</sup> <sup>1</sup> Actuated Medical, Inc., 320 Rolling Ridge Dr., Bellefonte, PA, <sup>2</sup>The Pennsylvania State University, University Park, PA

surgery period for LIPUS and Control (Sham) cohorts (n=4/treatment). After 1-wk, the average percent (%) of active channels (p<0.01) and **D.** Number of over 2-6 wks, the average SNR of the active channels was nearly 5 dB higher in LIPUS treated (p=0.386) cohort despite an increased electrode impedance. Curves depict Mean ± Mean Std. Err. Orange = LIPUS, Gray= Control (Sham). Statistical Analysis= Student's t-test at 6 wks.





